

Optimizing Business Processes

using Attributed Petri Nets

Bernd Eichenauer, IBE Simulation Engineering GmbH

Abstract: A method is described which allows the exact modeling and optimization

of business processes under arbitrary constraints.

In the last years the optimization of business processes has gained increasing atten-
tion since it can be used to reduce costs at relatively low effort. Furthermore, it is the
endmost opportunity at-hand to encounter the cost pressure that arises from the
globalization of markets. In the following we introduce a method to create exact and
executable models of discrete processes. The models can be optimized using
mathematical methods. The introduced method has been proven in numerous appli-
cations (see, e.g., [1,2,3,4,5,6,7,8,9]).

1. Modeling Method

Today, systems for the planning of workflows and the automation of processes are
frequently based on CASE methods introduced in the 1980s and 1990s. Their use is
limited as they generally describe and verify the systems planned in an incomplete
manner. Typically only the static parts of an application are characterized by a semi
formal system specification using pseudo code and numerous graphics. Thus only
the consistency of the specification can be verified but not its content. It are precisely
the tasks where computers could be useful that are inadequately supported by most
of the case tools available today, namely the verification of the dynamical aspects of
a system specification.

A further drawback of this approach is the discrepancy between the (procedural)
application view and the abstract model. Especially object-oriented modeling meth-
ods frequently lead to results that are hard to understand. The consequence is a
lack of acceptance and of actual usage by the users for which the models were ac-
tually produced.

These and other drawbacks were the initial trigger for the search of a new modeling
method that is both exact and user-friendly. The initial requirement was, that the
user should be able to recognize his application in the model, which means that the
model should be close to the real application. With other words: a model should be
functionally as well as structurally a realistic map of the application.

Structural and functional conformance between reality and model can be reached, if
the visual structure can be identically mapped into the model. The postulation of
identical behavior implies that the model has to be an executable simulation model.
An executable (animated) model enables cost efficient experiments to verify the de-
sign of a system, or to optimize process parameters with respect to certain criteria
like production costs.

The analysis of exact modeling of industrial applications led to the development of a

 1

semi-graphical modeling language, MSL1, and its implementation in the simulation
development environment PACE [10]. MSL provides three kinds of language ele-
ments, namely elements

• to describe the structure of an application including its process graph

• to visualize the objects that are moving along the process graph

• to process data objects and other process data.

Elements from Petri nets can be used to visualize the process graph. In MSL proc-
ess steps are described using generalized places, transitions, and connectors. The
generalized elements are given attributes. These attributes determine the precise
treatment of the objects at the nodes of the net.

Besides the well-known elements of the so-called S/T-
nets, MSL provides two further net elements, channels
and modules. These elements serve to describe the hier-
archical structuring of nets. They can be used to map the
structure of the real system to the model. Modules con-
tain re-usable partial nets that can be inserted into an
arbitrary net using places and channels as interfaces.
Channels are similar to passive net elements just like
places. They are used to combine several connectors
between modules.

As in Petri nets, objects traveling along the process graph are visualized as tokens
or containers. The attributes of the tokens characterize the entities of the real ob-
jects. In order to access the attributes of the objects they are assigned to connector
variables attributed to the connectors. Processing (modification) of the objects and
other process data is mainly done at the transitions containing instructions in a script
language. At present MSL uses Smalltalk-80.

The following example of a car wash demonstrates the interaction of the different
elements of the language. You can see the places and transitions, as known from
S/T nets that determine the feed of cars within the model, regulate the time of the
washing activity, or count and display the number of washed cars. The “Distribution
Time Histogram” shows the probability to find a certain number of cars in the queue.

1 Modeling and Simulation Language

 2

2. Net Functions

Giving attributes to the net elements provides many new ways of constructing nets.

s will occur. Con-

xample:

Hereby closed process graphs are of special meaning. They can be “called” with
varying parameters from different transitions and return results to the calling envi-
ronment. In this paper we will refer to these process graphs as “net functions”. At
first we will consider a design that can be used for such functions.
In real systems not only synchronous but also asynchronous event
ventional Petri nets do not provide the later. In MSL asynchronous events are gen-
erated by introducing a token, with or without attributes, into a place. In the MSL
code we use the addTokenTo: message for this event.

E

The figure shows two simple process graphs. Initially only the left

graph contains one token. As soon as the simulation is started the
process in the left graph adds a token to the place called “AsynEvent”.
This, in turn, starts a process in the right graph. The final state is
shown in the following figure.

The described mechanism can be used for net functions as follows: The name of the
place which accepts the return value and optional user data is passed to the net
function. At the end of the net function the return value is handed over again using
the addTokenTo: message.

 3

Example:

The right hand side process graph shows the net function. The process

The resulting graph is shown in the following net:

displayed on the left starts the net function and hands over three pa-
rameters to the net function. The function result is returned to the place
labeled “ReturnPlace”.

3. Optimizer

The availability of net functions leads to the question about extreme values of these
functions. If we model a part of an entire business process as a net function, then
the extreme of the net function would just represent the optimal parameters of this
(sub) process.

 4

The determination of the extremal values can be seen in analogy to the search for
extremal values of ordinary mathematical functions. In general the analytical proper-

uity of
net functions If this is not the case the methods are extended by additional scaling

the described mechanism for calling net func-
tions must be slightly modified. The function call is no longer performed with the

ties of the net function, however, are not known. This has to be considered when
choosing the optimization procedure. In many cases they are generalized proce-
dures that can only be evaluated for certain arguments. This case is frequently found
when optimizing processes with resources that cannot be partially allocated.

Therefore, optimization methods where selected that require only the contin

mechanisms. Currently the hill climbing method, the simplex method, and a geneti-
cal algorithm are implemented for mathematical and net functions. The methods can
be used individually or in sequence.

To be able to connect an optimizer

addTokenTo: message. When an optimizer is called the entry place of the net func-
tion and the place where the result has to be delivered is handed over. The netRe-
sult: message is used for returning the current function value to the calling optimizer.

Example:

Starting at a value of 0.2 the maximum of the sinus function is c lcu-
lated using the hill climbing method.

4. Case Study

Task

cribed optimization method is demonstrated using a more
extensive example. Consider a production facility, which is separated into two parts,

rameters that have to be evaluated during the
simulation:

a

4.1 Nature of the

In the following the des

preparation and production. Five different products with production parameters given
in the following table are produced.

In the columns you can find the pa

 5

Column 1: Product number

uired for the preparation.

sts without costs of labor

In addition, os/hour. One hour
f labor in the production department is estimated at 40 euros/hour.

4.2 Modeling

the right side shows the top hierar-
chical level of the net function. More detailed lev-

o
parts, the module “InitializationAndStart” and the

lization is not discussed in detail here. It
sets the number of personnel in the different department

Column 2: Time in hours req

Column 3: Time in hours required for the production.

Column 4: Average time span between two sales.

Column 5: Raw revenue = sales price – material co

 the labor costs for preparation are estimated at 30 eur
o

The figure on

els can be shown when opening the modules,
which contain increasingly detailed implementation
details. However, these are normally not shown on
the application surfaces of simulators.

The module "ProductGeneration" consists of tw

module where the production is modeled. The lat-
ter is a combination of the departments “Order-
Generation” and “Manufactoring”. The function is
called by inserting a token with two parameters
into the place “ModelEntry”. The parameters con-
tain the number of personnel in the preparation
and in the production. The function result is the
profit per hour, which is calculated by the simulator
over a sufficiently large time interval (e.g., 1000
hours).

The initia
s and ensures that at the

 6

start of the production identical initial conditions exist in the preparation and produc-
tion. More interesting is the start of the production. It is triggered by inserting 5 to-
kens into the place “OrderGeneration” of the module with the same name. Accord-
ingly, deleting the token in the place “OrderGeneration” terminates the production. In
this way it is easy to model a switch using the message addTokenTo:, and the mes-
sage for deleting all tokens.

Each token in the place “Order-

n

The place “Orders” is used as an interface between the modules “OrderGeneration”

The figure on the next side shows the simplified module “Manufacturing”.

The queues in front of the two departments are organized in the places “WorkPrepa-

.3 Experiments with the Model

The description in the previous chapter shows the most important features of the

The most important question for the layout of a modeled business process is how to

Generation” has two attributes, the
product number and an exponential
distribution, whose mean value is
determined by the average time
between two orders for the product
as shown in the previous table. The
connector assigns the distributions
to the variable “t”. The next value of
the distribution “t next” is inter-
preted as a waiting time until the
next transition. As soon as the
waiting time is over a token with
two attributes, the product number
erated and transferred to the place

“Orders”.
“productNo”, and starting time “orderTime” is ge

and “Manufacturing”. It should be noted that it is drawn here with a shade of grey as
compared to the last but one figure (Module "ProductGeneration"). This indicates
that the place is defined on a higher level of hierarchy.

ration” and “Production”. The values in square brackets are handed over by a call of
the net function and indicate the capacity of the places which represent the actual
number of workers. The waiting resp. work time inscribed in the following transitions
is defined in column 2 and 3 of the above table “Products”. The module accumulates
the revenue during a period of 1000 hours. After this time the result is calculated
from the difference of the revenue and the cost for personnel.

4

business model given in section 4.1. To keep it short, the model was somewhat sim-
plified. The extended net function can be used both as a standard net function and in
combination with the optimizer. In addition, it allows to define additional constraints,
e.g., to purport a maximum processing time for the execution of an order. The ex-
periments described in the following use the extended model.

pick the resources in order to gain the largest possible profit. From the table “Prod-
ucts” the personnel employed in both departments would sum up to 3.5 workers for

 7

preparation and 4.95 for the production. Considering only these mean values one
would employ 4 respectively 5 skilled workers in these departments.

 the underlying case of two departments the optimal number of workers can be

The x-coordinate shows the number of personnel in the production. The number of

In
determined graphically. The profit accumulated over 1000 hours by the net function
is calculated and visualized in two nested loops. The result is shown in the following
figure.

workers in the preparation department corresponds to the color of the respective
graph (3:green, 4:magenta, 5:cyan, 6:purple, 7:pink, and 8:orange) or by counting
the curves on the ordinate top down. It can be seen that the optimum is not found at
the mean values (4,5) but at (4,6).

 8

It is also interesting to take a look at the behavior of the queues in the departments.
It can be seen by the behavior of the order queues as functions of the time and is
displayed for the values (4 5), and (4 6) in the following two figures.

 9

The figures show that with only 5 workers the order queue is not stable, i.e., the pro-
duction time (run time) of an order is dependent on the time it was started. However,
the production is rendered stable if the number of production workers is increased
from 5 to 6.

The numbers given here will change as soon as the production time for an order is
limited. Constraints like these arise when there is no store available for the resulting
products. In the next figure the maximum production times of orders are displayed
for a range of 4 to 8 workers in the preparation department. The graph correspond-
ing to a certain number of workers can be extracted from the color or found by
counting the graphs on the right side from top to bottom. For the maximum produc-
tion times of 8 resp. 9 hours we see that (7 10) resp. (7 8) workers are required.

4.4 Use of an Optimizer

The figure shows the interface between
the module “ProductGeneration” de-
scribed in Section 4.2 and the optimizer.
Here a genetic optimizer is used for
searching the optimum in a range from (4
6) to (10 11). Only integer numbers are
considered (scale: 1).

In order to limit the production time for the
tasks the module “Production” was modi-
fied as follows.
The maximum production time of an order
found in the simulation is divided by two if
the requested maximum production time
is exceeded during the simulation within
1000 hours. A maximum production time of 8 and 9 hours yields the same result as
previously obtained from the graphical examination.

 10

4.5 User interface

To ease the use of models, PACE includes numerous graphical and textual input
and output elements. They can be easily put together to a user interface that can be
used also by persons that were not involved in developing the model after a short
briefing. In the case study at hand the user interface shown in the following figure
was used.

The model can be operated using the “Short Simulation Executive” shown in the up-
per left corner. Initial values and model parameters described earlier are set by bar
gauges or read from the table. Depending on the selected mode (single, graphical,
algorithmic) the result is presented as a pie chart or in form of curves.

5. Conclusion

The introduced modeling and optimization method is not limited to business proc-
esses but can be used for arbitrary discrete processes. The method has already
been applied in traffic control, construction, and logistics. The method has been in-
corporated into the simulator development environment PACE 5.0 for a systematic
approach to system optimization.

 11

Literature:

[1] C. Böhnlein: Modellierung des Bullwhip-Effekts mit Hilfe höherer Petri-Netze,

wisu, 31 (2002) 8-9, S. 1124-1127
[2] U. Dietel, F. Bennemann: Reihenfolgebildung von Gießaufträgen bei einem

sächsischen Metallhersteller, in: M. Rabe, B. Hellingrath: Handlungsanleitung
Simulation in Produktion und Logistik – Ein Leitfaden mit Beispielen für kleinere
und mittlere Unternehmen, SCS International, 2001, ISBN 1-56555-226-1

[3] U. Dietel, H.-J. Hanisch: Simulation des Bereichs Wärmebehandlung in der
Porzellanherstellung, in: M. Rabe, B. Hellingrath: Handlungsanleitung Simulati-
on in Produktion und Logistik – Ein Leitfaden mit Beispielen für kleinere und
mittlere Unternehmen, SCS International, 2001, ISBN 1-56555-226-1

[4] S.M.O. Fabricius, E. Badreddin: Stochastic Petri Net Modeling for Availability
and Maintainability Analysis, Proceedings of 14th International Congress and
Exhibition on Condition Monitoring and Diagnostic Engineering Management
(COMADEM), 2001, Manchester, UK

[5] V. Franz: Production simulation techniques in practice, BFT 5, 2001, S. 20 – 23
[6] B. Eichenauer, K. Scherer: Modellierung und Simulation von intelligenten Ge-

bäudesystemen mit attributierten Petri-Netzen, ikm 16. Internationales Kolloqu-
ium über Anwendungen der Informatik und Mathematik in Architektur und Bau-
wesen, Weimar, Juni 2003

[7] M. Enkelmann: Simulation in block-production operations, BFT 5, 2001, S. 24 –
28

[8] B. Eichenauer: Simulation, the key to more efficiency in commercial and pro-
duction processes, BFT 6, 2001, S. 40 - 44

[9] G. Feistl: Findet das Nadelöhr – Simulation von Verpackungsprozessen, neue
verpackung 4, 1998, S. 32 - 34

[10] PACE 5.0 User Manual, IBE Simulation Engineering GmbH, 2002,
www.ibepace.com

 12

